ODMC: Outlier Detection on Multivariate Time Series Data based on Clustering
نویسندگان
چکیده
Outlier detection on time series data plays an import role in life. In this paper we propose a method of outlier detection on time series data mainly aiming at the multivariate type. The improved ant colony algorithm is used for data clustering in the purpose of the classification of the time series data. Both the distance of inner-clusters and inter-clusters are considered to ensure the accuracy of the clustering. In addition we play an emphasis on the similarity between data points. The objects which have significant changes from the neighbors are identified as outliers. Experiments results show the algorithm is effective and efficient.
منابع مشابه
Identification of outliers types in multivariate time series using genetic algorithm
Multivariate time series data, often, modeled using vector autoregressive moving average (VARMA) model. But presence of outliers can violates the stationary assumption and may lead to wrong modeling, biased estimation of parameters and inaccurate prediction. Thus, detection of these points and how to deal properly with them, especially in relation to modeling and parameter estimation of VARMA m...
متن کاملAn Empirical Comparison of Distance Measures for Multivariate Time Series Clustering
Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...
متن کاملOutlier Detection Using Extreme Learning Machines Based on Quantum Fuzzy C-Means
One of the most important concerns of a data miner is always to have accurate and error-free data. Data that does not contain human errors and whose records are full and contain correct data. In this paper, a new learning model based on an extreme learning machine neural network is proposed for outlier detection. The function of neural networks depends on various parameters such as the structur...
متن کاملSupport Vector Clustering for Outlier Detection
In this paper a novel Support vector clustering(SVC) method for outlier detection is proposed. Outlier detection algorithms have application in several tasks such as data mining, data preprocessing, data filter-cleaner, time series analysis and so on. Traditionally outlier detection methods are mostly based on modeling data based on its statistical properties and these approaches are only prefe...
متن کاملOptimal Feature Based Density Clustering for Outlier Detection in Multivariate Data
Efficient outlier detection in a large-sized big data environment incurs much of complexity in processing the information and to handle it in a proficient way. For segregating outliers from those normal data items, many of the prevailing methodologies experiences complexity in accordance with the features involved in every single attribute. On recognizing appropriate features associated the cha...
متن کامل